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   Read section 18.4 and 18.5 of Schwartz, with special attention to the start of 18.4. The point

here is to notice how the “subtraction point” enters the calculation when we do Pauli-Villars regulari-

zation. We will se further examples of this, but you should start noticing that we have basically two 

classes of non-physical parameters going around: (1) regulators (Λ, mγ and ε), which in some limit 

bring the divergences back; (2) arbitrary scales (µ, s0, t0, p0, µ, µ and yet another µ), which are NOT 

taken to in�nity or zero. This second class can be really confusing because there is a lot of freedom 

in identifying one with each other (or with more abuse, with some physical scale). For now, just try

to keep an eye out for when we are re-de�ning these. 
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1 Motivation

Naive power-counting of divergences in a theory is precisely just that. If a theory passes the naive test, you’re
hopeful that it’s indeed renormalizable and if it does not, you are less optimistic, but in and of itself, this test is
not sufficient to prove renormalizability, not even perturbatively. The idea of this problem is to illustrate this with
an example that’s not even particularly exotic, a massive spin-1 field.

2 Problem

2.1 Dimensional Analysis

Consider a theory with a massive spin-1 field coupled to a fermion,

S =

∫
d4x

(
−1

4
FµνF

µν +
1

2
m2AµA

µ + ψ̄(i/∂ −M)ψ − gψ̄ /Aψ

)
(1)

this is analogous to a version of QED where the photon is massive. What is the dimension of the coupling g? And
what would standard wisdom tell you about the renormalizability of this theory given it?

2.2 Renormalizable?

2.2.1 The UV behaviour of the propagator

The conclusion in the previous problem is incorrect, [g] = E0 does not, in this case, indicate renormalizability.
To see this, find the free propagator for a spin-1 field. I recommend doing this in the Path Integral prescription,
doing it via canonical quantization is immensely more complicated and will lead to nasty non-covariant contributions
which cancel non-trivially.

How does this propagator behave in the deep UV, when p→ ∞?

2.2.2 Correcting the power counting

Accounting for this, modify the usual power-counting rules and apply it to (1), what is the conclusion about
renormalizability now?

2.3 The Stueckelberg Mechanism

As it turns out, this conclusion is also incorrect, and (1) is indeed renormalizable. To see this, consider a different
theory, where we integrate in a new scalar field ϕ(x)[1] via

Aµ(x) → Aµ(x)−
1

m
∂µϕ(x) and ψ(x) → e−

i
m gϕ(x)ψ(x)

Find the new action and prove that it’s now invariant under gauge transformations of the form

Aµ(x) → Aµ(x) + ∂µα(x) ϕ(x) → ϕ(x) +mα(x) and ψ(x) → eiα(x)ψ(x)

[1]Note that integrating in a field means ϕ(x) is a dynamical field with its own path integral.
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for any function α(x). This action is called the Stueckelberg Action.
Prove, additionally, that there exists a gauge choice that removes the ϕ dependency from the action, such that

the path integral over ϕ factors out, recovering the original theory (1) entirely. This shows that, “accidentally”,
there exists a superseding gauge theory that reduces to (1) given the correct gauge choice, and hence, the two
theories must be physically equivalent as long as we’re computing observables.

2.4 Renormalizable

2.5 Gauge-Fixing

Next, using the Faddeev-Popov prescription, gauge fix this in the equivalent of an Rξ gauge, but instead of
constructing it out of the Lorenz gauge ∂µA

µ = 0 as is standard, use ∂µA
µ +mϕ. This is an arbitrary choice, but

it’s convenient for reasons you will see next.

2.6 The Decoupling Gauge

Now, there should be a choice of ξ that decouples Aµ and ϕ, find it. In this gauge, compute the propagators for
both fields, prove that now this theory looks renormalizable by naive power-counting.

The conclusion here is rather nice. Evidently this is not a full proof of the renormalizability of massive QED
(though the full proof does start from the Stueckelberg Action), but it goes to show that not every theory that
looks non-renormalizable by power-counting is truly untreatable. In its original form, we cannot naively cancel all
infinities at the level of n-point function in massive QED with a finite number of counterterms[2], but we’ve proven
that this is a gauge-dependent statement, there is a better choice of gauge where perturbative renormalization is
possible. This is not a completely out of the box idea in physics, in mechanics we often find that one choice of
coordinate system is much better suited to deal with a given problem, the situation here is not too dissimilar from
this.

[2]One can prove however, that even in this gauge, the contributions arising from the kµkν/m2 contributions do not contribute to the
S-matrix rendering it renormalizable, but the construction is quite a bit more complicated than dealing with the theory in a different
gauge as we’ve done here (see for example Itzykson-Zuber chapter 8, section 4).
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